Structural conservation of an ancient tRNA sensor in eukaryotic glutaminyl-tRNA synthetase

نویسندگان

  • Thomas D. Grant
  • Edward H. Snell
  • Joseph R. Luft
  • Erin Quartley
  • Stephanie Corretore
  • Jennifer R. Wolfley
  • M. Elizabeth Snell
  • Andrew Hadd
  • John J. Perona
  • Eric M. Phizicky
  • Elizabeth J. Grayhack
چکیده

In all organisms, aminoacyl tRNA synthetases covalently attach amino acids to their cognate tRNAs. Many eukaryotic tRNA synthetases have acquired appended domains, whose origin, structure and function are poorly understood. The N-terminal appended domain (NTD) of glutaminyl-tRNA synthetase (GlnRS) is intriguing since GlnRS is primarily a eukaryotic enzyme, whereas in other kingdoms Gln-tRNA(Gln) is primarily synthesized by first forming Glu-tRNA(Gln), followed by conversion to Gln-tRNA(Gln) by a tRNA-dependent amidotransferase. We report a functional and structural analysis of the NTD of Saccharomyces cerevisiae GlnRS, Gln4. Yeast mutants lacking the NTD exhibit growth defects, and Gln4 lacking the NTD has reduced complementarity for tRNA(Gln) and glutamine. The 187-amino acid Gln4 NTD, crystallized and solved at 2.3 Å resolution, consists of two subdomains, each exhibiting an extraordinary structural resemblance to adjacent tRNA specificity-determining domains in the GatB subunit of the GatCAB amidotransferase, which forms Gln-tRNA(Gln). These subdomains are connected by an apparent hinge comprised of conserved residues. Mutation of these amino acids produces Gln4 variants with reduced affinity for tRNA(Gln), consistent with a hinge-closing mechanism proposed for GatB recognition of tRNA. Our results suggest a possible origin and function of the NTD that would link the phylogenetically diverse mechanisms of Gln-tRNA(Gln) synthesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-canonical eukaryotic glutaminyl- and glutamyl-tRNA synthetases form mitochondrial aminoacyl-tRNA in Trypanosoma brucei.

Glutaminyl-tRNA synthetase is thought to be absent from organelles. Instead, Gln-tRNA is formed via the transamidation pathway, the other route to this essential compound in protein biosynthesis. However, it was previously shown that glutaminyl-tRNA synthetase activity is present in Leishmania mitochondria. This work identifies genes encoding glutaminyl- and glutamyl-tRNA synthetase in the clos...

متن کامل

Leishmania tarentolae contains distinct cytosolic and mitochondrial glutaminyl-tRNA synthetase activities.

The intracellular distribution of glutaminyl-tRNA synthetases and their role in mitochondrial tRNA import were evaluated in the ancient eukaryote Leishmania tarentolae. The following results were obtained: (i) Glutaminyl-tRNA synthetase was detected in leishmanial mitochondria. This was unexpected because it has been postulated that, in organelles, Gln-tRNAGln is not formed by direct acylation ...

متن کامل

Two control systems modulate the level of glutaminyl-tRNA synthetase in Escherichia coli.

We studied the regulation of in vivo expression of Escherichia coli glutaminyl-tRNA synthetase at the transcriptional and translational level by analysis of glnS mRNA and glutaminyl-tRNA synthetase levels under a variety of growth conditions. In addition, strains carrying fusions of the beta-galactosidase structural gene and the glnS promoter were constructed and subsequently used for glnS regu...

متن کامل

Human asparaginyl-tRNA synthetase: molecular cloning and the inference of the evolutionary history of Asx-tRNA synthetase family.

We have cloned and sequenced a cDNA encoding human cytoplasmic asparaginyl-tRNA synthetase (AsnRS). The N-terminal appended domain of 112 amino acid represents the signature sequence for the eukaryotic AsnRS and is absent from archaebacterial or eubacterial enzymes. The canonical ortholog for AsnRS is absent from most archaebacterial and some eubacterial genomes, indicating that in those organi...

متن کامل

Evolution of the Glx-tRNA synthetase family: the glutaminyl enzyme as a case of horizontal gene transfer.

An important step ensuring the fidelity in protein biosynthesis is the aminoacylation of tRNAs by aminoacyl-tRNA synthetases. The accuracy of this process rests on a family of 20 enzymes, one for each amino acid. One exception is the formation of Gln-tRNA(Gln) that can be accomplished by two different pathways: aminoacylation of tRNA(Gln) with Gln by glutaminyl-tRNA synthetase (GlnRS; EC 6.1.1....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 40  شماره 

صفحات  -

تاریخ انتشار 2012